34:00.0

08:00.0

06:00.0

56:00.0

59:00.0

31:00.0

52:00.0

52:00.0

22:00.0

59:00.0

44:00.0

46:00.0

0.00:00

42:00.0

11:00.0

28:00.0

19:00.0

31:00.0

59:00.6

24:00.0

27:00.0

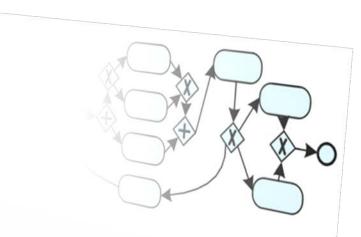
23:00.0

42:00.0

05:00.0

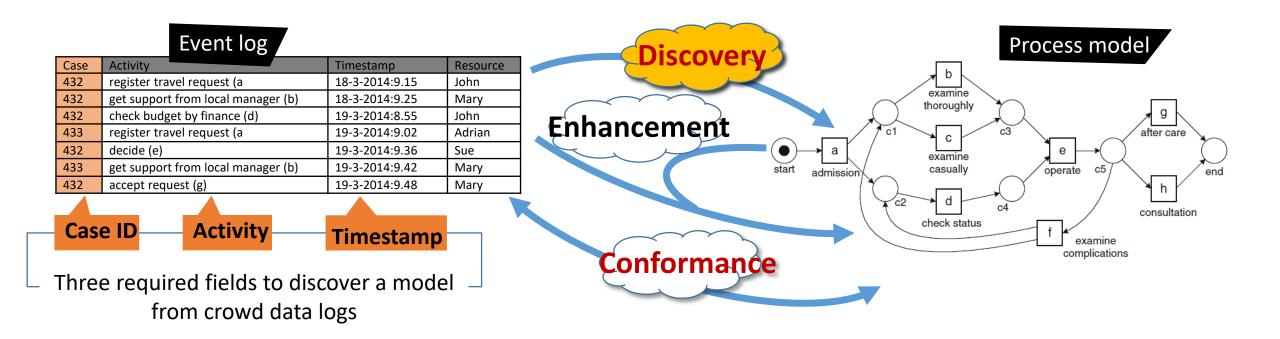
14:00.0

59:00.0

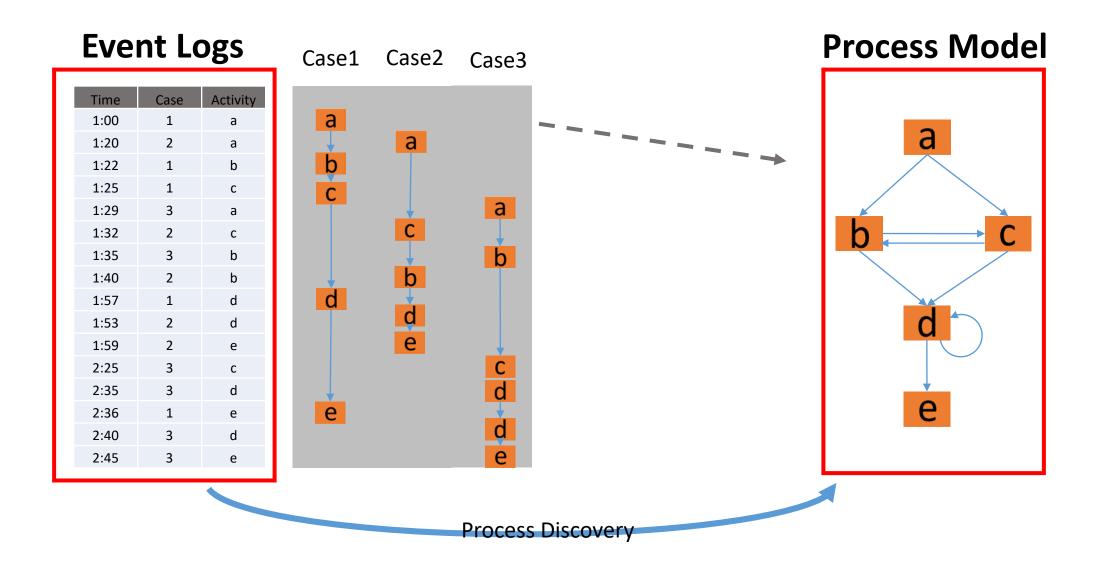

54:00.0

4

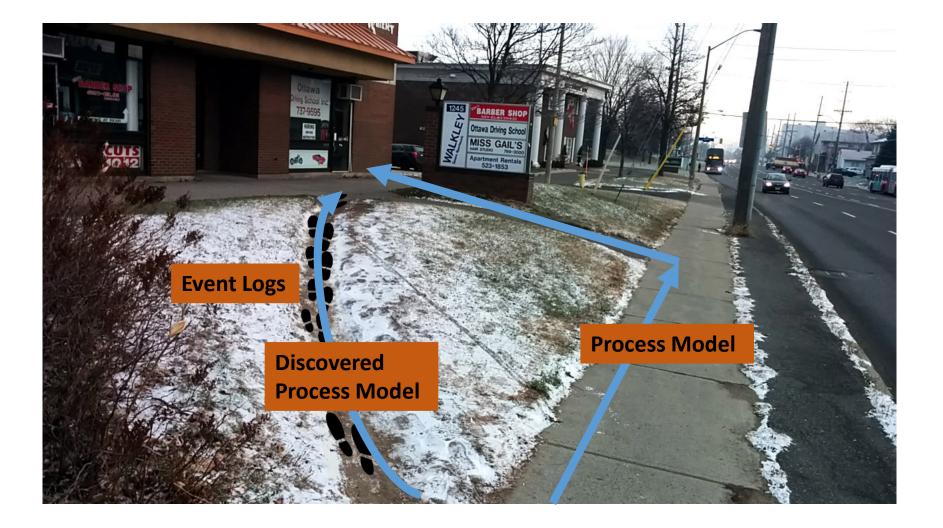
Data Preprocessing for **Goal-oriented Process Discovery**


Mahdi Ghasemi, Daniel Amyot University of Ottawa, Canada {mghasemi, damyot}@uottawa.ca

> CrowdRE'19, Jeju, South Korea September 24, 2019



What is process mining?



University of Ottawa

5/29

University of Ottawa

Process Mining: activity-oriented approach, focuses on "how", "what", "where", "who", and especially "when" questions

Goal-oriented modeling: focuses mainly on answering "why" questions

not considered by process mining

---- Potential for synergy

1- M. Ghasemi and D. Amyot, "From Event Logs to Goals: A Systematic Literature Review of Goal-oriented Process Mining," Requirements Engineering, pp. 1-27, 2019

University of Ottawa

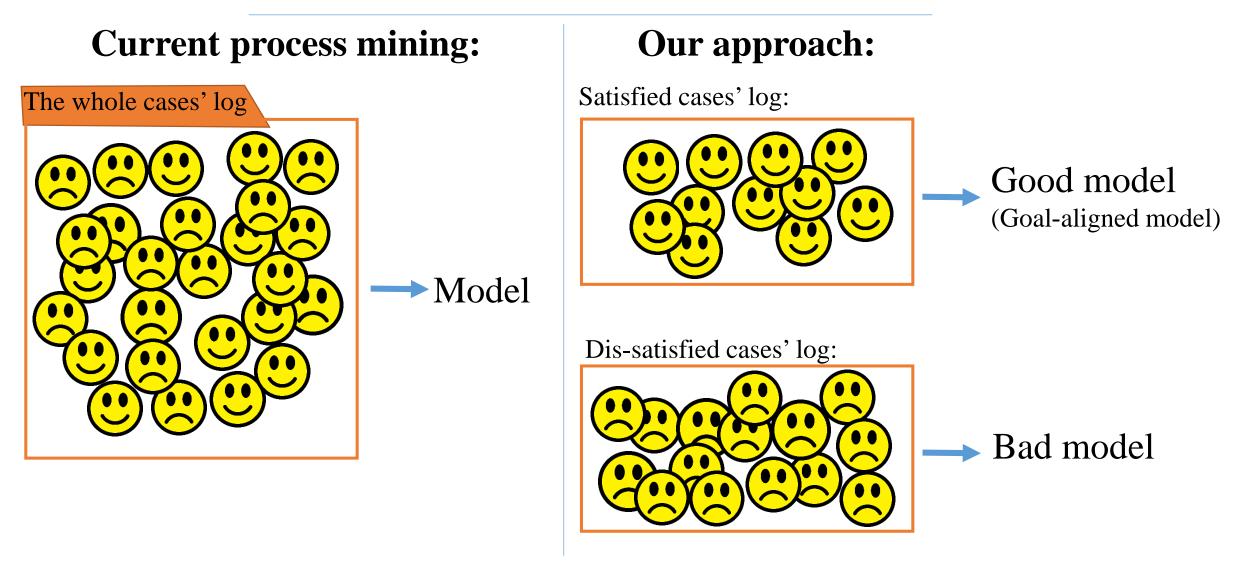
Problems of two complementary domains: Process mining:

1. Unreliable rationality behind the discovered models

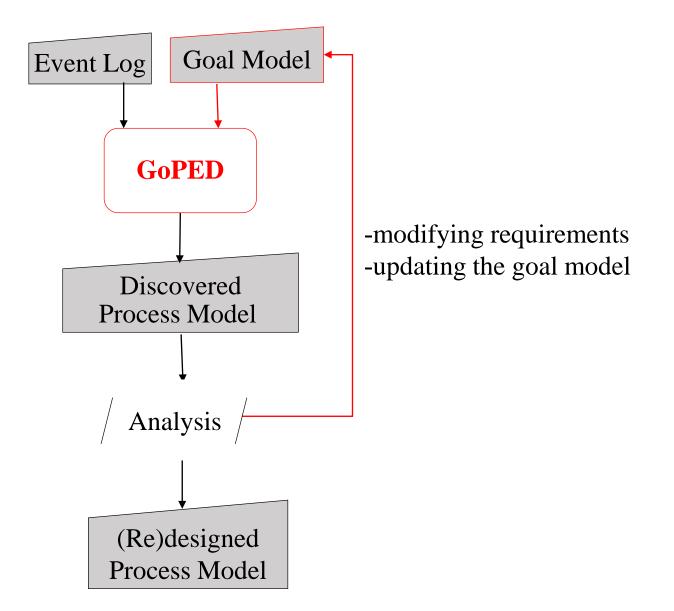
2. Unstructured "spaghetti-like" processes

Requirements Engineering (RE):

1. Using huge crowd-based data logs generated from organization processes throughout the RE lifecycle



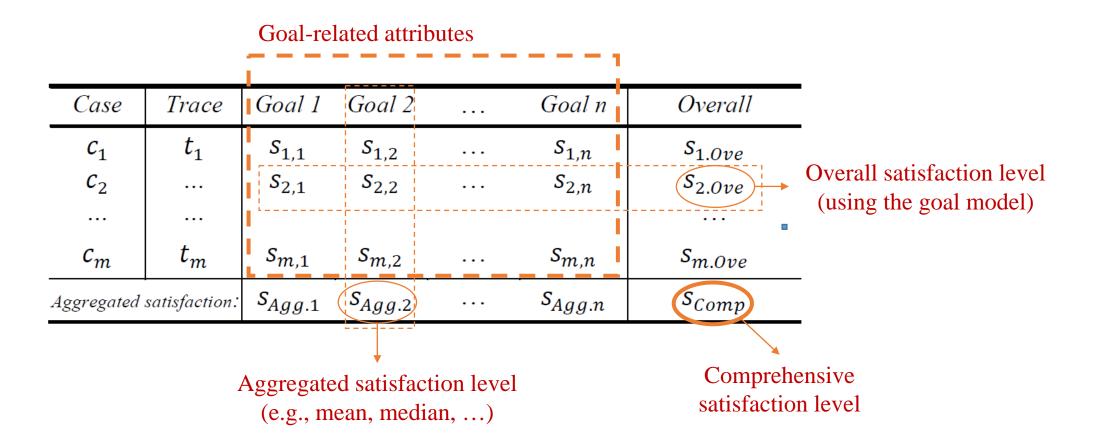
1- M. Ghasemi and D. Amyot, "From Event Logs to Goals: A Systematic Literature Review of Goal-oriented Process Mining," *Requirements Engineering*, pp. 1-27, 2019 2- M. Ghasemi and D. Amyot, "Process mining in healthcare: a systematised Literature Review," *International Journal of Electronic Healthcare*, vol. 9, no. 1, pp. 60-88, 2016.


University of Ottawa

Goal-oriented Process Enhancement and Discovery (GoPED)

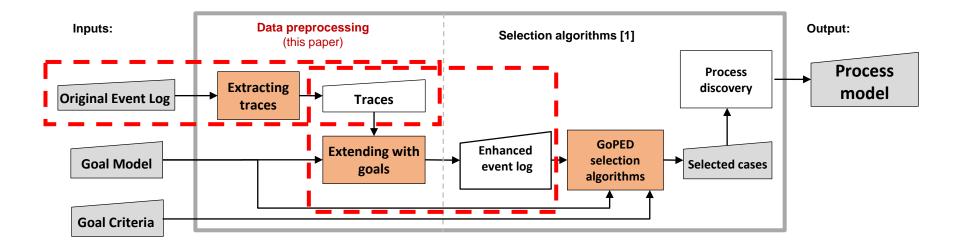
1- M. Ghasemi and D. Amyot, "Goal-oriented Process Enhancement and Discovery," in International conference on business process management., 2019. PP. 102-118

8/29

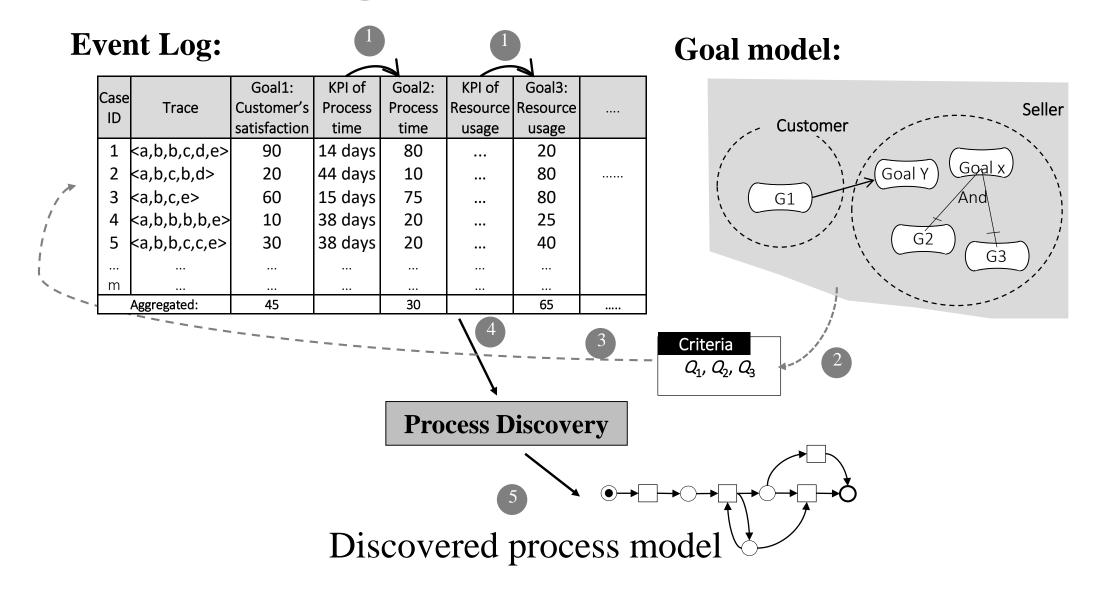


1- M. Ghasemi and D. Amyot, "Goal-oriented Process Enhancement and Discovery," in International conference on business process management., 2019. PP. 102-118

9/29


Event log enhanced with goal-related attributes (EnhancedLog)




Overview of GoPED steps and the position of data preprocessing

University of Ottawa

1. M. Ghasemi, "Towards Goal-oriented Process Mining", [Doctoral Symposium paper], in *Proceedings of the International Requirements Engineering Conference*, IEEE CS, 2018, pp. 484-489.

		Case	Trace	Goal 1	Goal 2		Goal n	Overall
1	\rightarrow	<i>c</i> ₁	t_1	<i>S</i> _{1,1}	<i>S</i> _{1,2}		<i>S</i> _{1,<i>n</i>}	S _{1.0ve}
		<i>C</i> ₂		<i>S</i> _{2,1}	<i>S</i> _{2,2}		<i>S</i> _{2,<i>n</i>}	$S_{2.0ve}$
		C _m	t_m	<i>S</i> _{<i>m</i>,1}	<i>S</i> _{<i>m</i>,2}		S _{m,n}	S _{m.Ove}
		Aggregated	satisfaction:	$S_{Agg.1}$	S _{Agg.2}		S _{Agg.n}	S _{Comp} 3
						2		

Three criteria for model discovery in GoPED:

- 1. To guarantee the satisfaction level for one or multiple goals for all cases
- 2. To guarantee the aggregated satisfaction level of one or multiple goals
- **3.** To guarantee the comprehensive satisfaction level

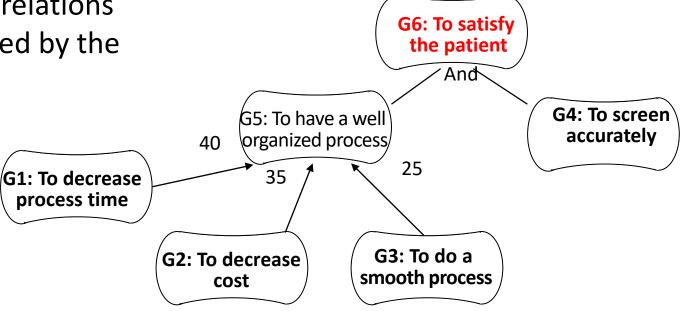
An example in healthcare: Screening and Diagnosis of Gestational Diabetes (DGD)

KPIs

Event log o	of 10 patients					
Case	Trace	Process Time (day)	Cost (\$)	Patient rating (1-10)	Accuracy of results	
Patient_1	$\langle a, b, c, g angle$	4	400	9	1	
Patient_2	$\langle a, b, c, g \rangle$	5	400	9	1	
Patient_3	$\langle a, b, c, g angle$	5	400	9	0	
Patient_4	$\langle a, b, c, d, e, c, g \rangle$	11	850	8	1	
Patient_5	$\langle a, b, c, d, e, c, g \rangle$	9	850	7	1	
Patient_6	$\langle a, b, c, d, e, c, g angle$	10	850	8	1	
Patient_7	$\langle {\sf a}, {\sf b}, {\sf c}, {\sf f}, {\sf b}, {\sf c}, {\sf g} angle$	8	600	7	1	
Patient_8	$\langle {\sf a}, {\sf b}, {\sf c}, {\sf f}, {\sf b}, {\sf c}, {\sf d}, {\sf e}, {\sf c}, {\sf g} angle$	17	1100	6	1	
Patient_9	$\langle {\sf a}, {\sf b}, {\sf c}, {\sf f}, {\sf b}, {\sf c}, {\sf d}, {\sf e}, {\sf c}, {\sf g} angle$	16	1100	5	1	
Patient_10	\langle a, b, c, d, b, c, d, e, c, d, e, c, g $ angle$	31	1150	4	1	

Goals

EnhancedL	.og			······································	
Case	Trace	G ₁ : To decrease process time	G ₂ : To decrease cost	G ₃ : To do a smooth process	G ₄ : To screen accurately
Patient_1	$\langle a, b, c, g angle$	100	100	88	100
Patient_2	$\langle a, b, c, g angle$	94	100	88	100
Patient_3	$\langle a, b, c, g angle$	94	100	88	0
Patient_4	$\langle a, b, c, d, e, c, g \rangle$	61	59	75	100
Patient_5	$\langle a,b,c,d,e,c,g angle$	72	59	63	100
Patient_6	$\langle a,b,c,d,e,c,g angle$	67	59	75	100
Patient_7	$\langle a,b,c,f,b,c,g angle$	78	82	63	100
Patient_8	$\langle {\sf a},{\sf b},{\sf c},{\sf f},{\sf b},{\sf c},{\sf d},{\sf e},{\sf c},{\sf g} angle$	41	20	50	100
Patient_9	\langle a, b, c, f, b, c, d, e, c, g $ angle$	43	20	40	100
Patient_10	$\langle {\sf a}, {\sf b}, {\sf c}, {\sf d}, {\sf b}, {\sf c}, {\sf d}, {\sf e}, {\sf c}, {\sf d}, {\sf e}, {\sf c}, {\sf g} angle$	9	10	30	100


L :

- $\langle a, b, c, g \rangle^3$, $\langle a, b, c, d, e, c, g \rangle^3$, $\langle a, b, c, f, b, c, g \rangle^1$, $\langle a, b, c, f, b, c, d, e, c, g \rangle^2$,
- $\langle a, b, c, d, b, c, d, e, c, d, e, c, g \rangle^1$

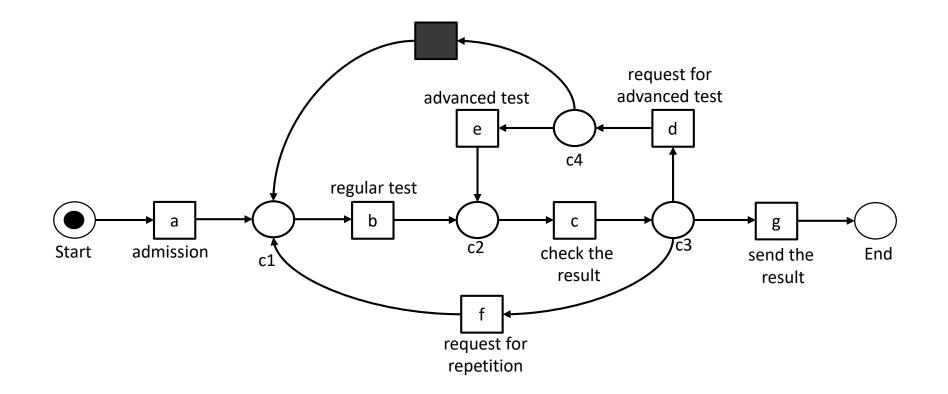
Goal model showing the relations between the goals pursued by the DGD process:

Overall = Sat (G₆) = Minimum $(SL(G4), 0.4 SL(G1) + 0.35 \times SL(G2) + 0.25 \times SL(G3))$

EnhancedLog							
Case	Trace	G ₁ : To decrease process time	G ₂ : To decrease cost	G ₃ : To do a smooth process	G₄: To screen accurately	Overall:	
Patient_1	$\langle a,b,c,g angle$	100	100	88	100	97	
Patient_2	$\langle a,b,c,g angle$	94	100	88	100	95	
Patient_3	$\langle a,b,c,g angle$	94	100	88	0	0	
Patient_4	$\langle a, b, c, d, e, c, g angle$	61	59	75	100	62	
Patient_5	\langle a, b, c, d, e, c, g $ angle$	72	59	63	100	65	
Patient_6	$\langle a,b,c,d,e,c,g angle$	67	59	75	100	66	
Patient_7	$\langle a,b,c,f,b,c,g angle$	78	82	63	100	75	
Patient_8	$\langle a, b, c, f, b, c, d, e, c, g \rangle$	41	20	50	100	36	
Patient_9	\langle a, b, c, f, b, c, d, e, c, g $ angle$	43	20	40	100	34	
Patient_10	\langle a, b, c, d, b, c, d, e, c, d, e, c, g \rangle	9	10	30	100	15	
	Aggregated:	66	90	64			

	EnhancedLog						
Case	Trace 1	G ₁ : To decrease process time	G ₂ : To decrease cost	G ₃ : To do a smooth process	G₄: To screen accurately	Overall:	
Patient_1	$\langle a,b,c,g \rangle$	100	100	88	100	97	
Patient_2	$\langle a, b, c, g \rangle$	94	100	88	100	95	
Patient_3	$\langle a,b,c,g \rangle$	94	100	88	0	0	
Patient_4	⟨a, b, c, d, e, c, g⟩	61	59	75	100	62	
Patient_5	⟨a, b, c, d, e, c, g⟩	72	59	63	100	65	
Patient_6	⟨a, b, c, d, e, c, g⟩	67	59	75	100	66	
Patient_7	$\langle a,b,c,f,b,c,g angle$	78	82	63	100	75	
Patient_8	\langle a, b, c, f, b, c, d, e, c, g \rangle	41	20	50	100	36	
Patient_9	\langle a, b, c, f, b, c, d, e, c, g $ angle$	43	20	40	100	34	
Patient 10	$\langle a, b, c, d, b, c, d, e, c, d, e, c, g \rangle$	9	10	30	100	15	
aggregated		66	61	66	90	64	
			↑ <u></u>				

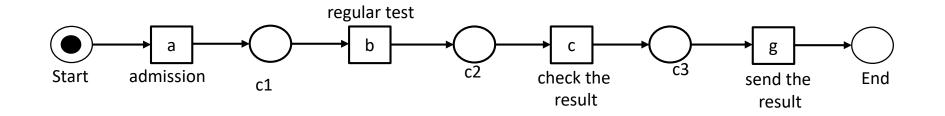
2


Three criteria for model discovery:

- 1. To guarantee the satisfaction level for one or multiple goals for all cases
- 2. To guarantee the aggregated satisfaction level of one or multiple goals
- **3.** To guarantee the comprehensive satisfaction level

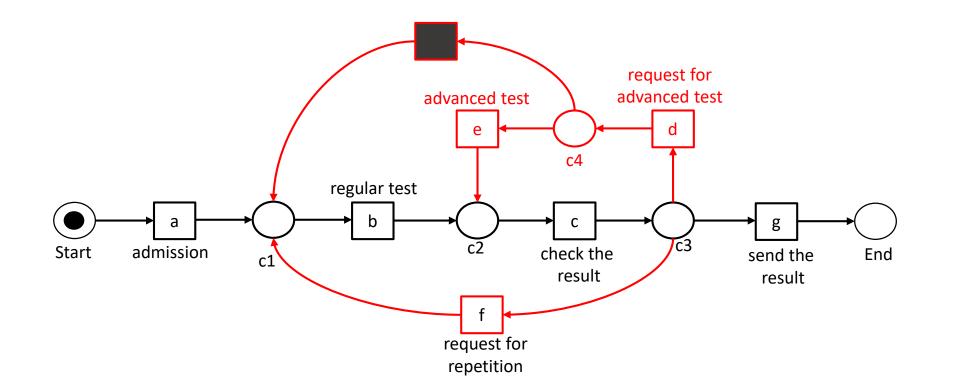
Process model discovered using *all* **cases**

Case perspective: generate a model that guarantees (with a confidence of 90%) that the satisfaction level for all patients in terms of goal "To decrease process time" will be at least 75 and that in terms of goal "To do a smooth process" will be at least 80.

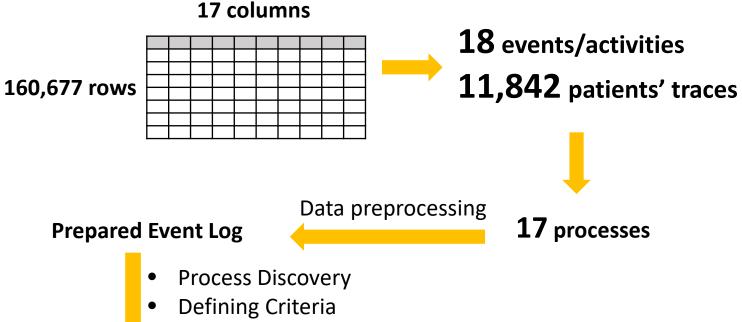

Subset = {Patient_1, Patient_2, Patient_3}

 $\text{Log}_{=} \{ \langle a, b, c, g \rangle^3 \}$

	Event log and satisfaction level of goals [0-100]					
Case	Trace	G ₁ : To decrease process time		G ₃ : To do a smooth process	G₄: To screen accurately	
Patient_1	$\langle a,b,c,g angle$	100	100	88	100	
Patient_2	$\langle a, b, c, g \rangle$	94	100	88	100	
Patient_3	$\langle a,b,c,g angle$	94	100	88	0	
Patient_4	$\langle a, b, c, d, e, c, g \rangle$	61	59	75	100	
Patient_5	$\langle a, b, c, d, e, c, g \rangle$	72	59	63	100	
Patient_6	$\langle a, b, c, d, e, c, g \rangle$	67	59	75	100	
Patient_7	$\langle a, b, c, f, b, c, g angle$	78	82	63	100	
Patient_8	$\langle a,b,c,f,b,c,d,e,c,g \rangle$	41	20	50	100	
Patient_9	$\langle a,b,c,f,b,c,d,e,c,g \rangle$	43	20	40	100	
Patient_10	⟨a, b, c, d, b, c, d, e, c, d, e, c, g⟩	9	10	30	100	



Case perspective: generate a model that guarantees (with a confidence of 90%) that the satisfaction level for all patients in terms of goal "To decrease process time" will be at least 75 and that in terms of goal "To do a smooth process" will be at least 80.



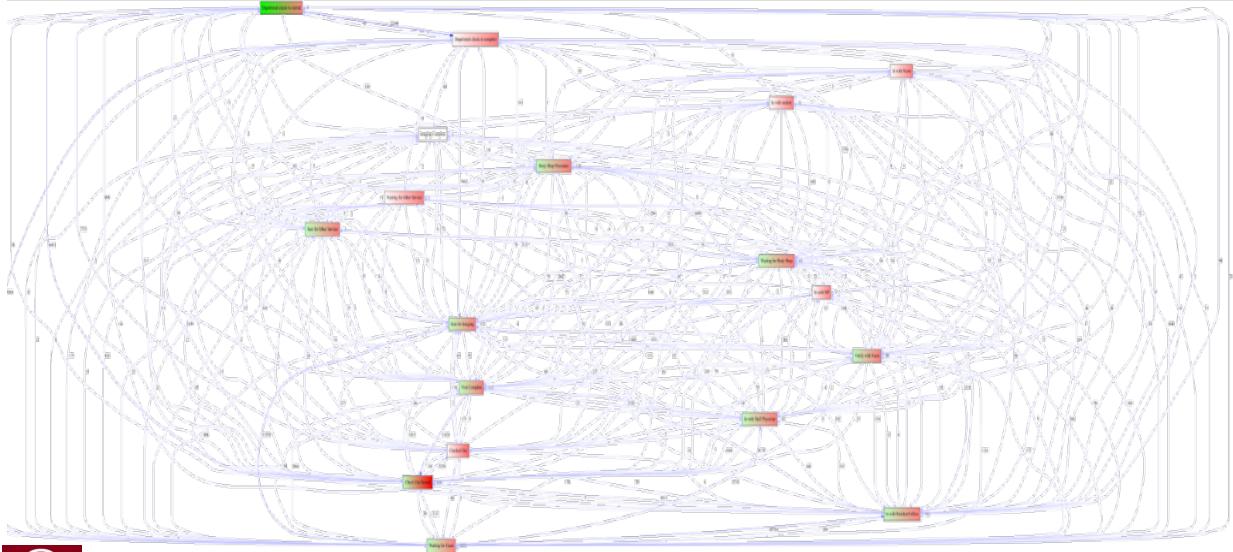
Data log from the Children Hospital of Eastern Ontario (CHEO):

Process

Models

Applying GoPED

University of Ottawa

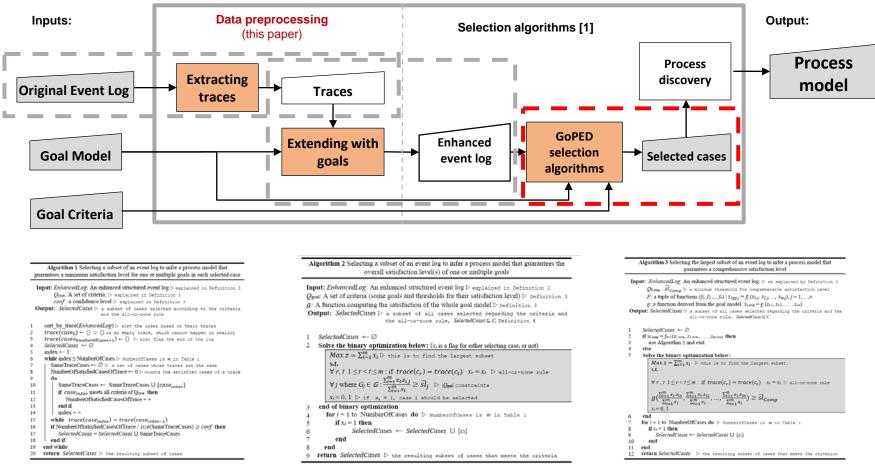

Comparing models/ Analysis/ Validation

Processes' name and the number of their events

	Process Name	Number of events (absolute)	Number of events (relative)
1	NEW PLASTER CLINIC	73991	46.05%
2	RETURN PLASTER CLINIC	22688	14.12%
3	NEW ORTHO	19459	12.11%
4	RETURN ORTHO	18250	11.36%
5	RETURN SCOLIOSIS	7642	4.76%
6	NEW SCOLIOSIS	5247	3.27%
7	NEW SPORTS MEDICINE	4934	3.07%
8	NEW DDH	3074	1.91%
9	NEW BODY SHOP	1545	0.96%
10	RETURN BODY SHOP	1465	0.91%
11	RETURN SPORTS MEDICINE	1132	0.70%
12	NEW CLUB FOOT	817	0.51%
13	RETURN DDH	188	0.12%
14	RETURN CLUB FOOT	175	0.11%
15	RETURN TELEHEALTH	59	0.04%
16	NEW TELEHEALTH	6	0.00%
17	TELEHEALTH	3	0.00%
	Grand Total	160675	100.00%

Spaghetti-like CHEO process model

Performance of tools:


TraceMaker	TraceMakerSmall sample15 events6 cases		CHEO Hospital 160,677 11,842	events	Synthetic large sample(CSV=40.6M) 1,025,000 events 50,000 cases		
	List()	Panadas	List()	Panadas	List()	Panadas	
Time	0.003 s	0.030 s	0.585 s	38.889 s	6.337 s	308.543 s	

EnhancedLogMaker	CHEO Hospital(CSV=7.4 M)	Synthetic large sample(CSV=40.6M)
Xc	11,842 cases 3 goals	50,000 cases 3 goals
7 📎	List()	List()
Time (s)	0.48 s	1.687 s

Future work related to GoPED

University of Ottawa

Thank you!

